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ABSTRACT

FINITE ELEMENT MODELING OF UNDERWATER ACOUSTIC
ENVIRONMENTS AND DOMAIN DECOMPOSITION METHODS

by
General Ozochiawaeze

Underwater acoustic scattering problems have several important applications ranging

from sonar imaging in target detection to providing information for sediment

classification and geoacoustic inversion. This work presents numerical methods for

time-harmonic acoustic scattering problems, specifically, finite element methods for

the Helmholtz equation. Furthermore, an iterative domain decomposition formulation

is introduced for acoustic scattering problems where the physical domain consists of

multiple layers of different materials.
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CHAPTER 1

INTRODUCTION

1.1 Helmholtz Equation and Acoustic Waves

Acquiring and interpreting sonar imagery of the seafloor is useful to a wide range of

oceanographic applications. Of special interest is in the forward modeling of acoustic

scattering waves in a rough, two-layered seafloor. To improve methods of underwater

communication, we need to model, and thus control, sound propagation arising in the

seafloor. In this chapter, we first give an overview of the mathematical background for

acoustic scattering problems. Then we discuss the theoretical preliminary background

required for the finite element method approach to solving boundary value problems

of the Helmholtz equation.

Consider the propagation of acoustic waves in an inhomogeneous medium

consisting of a material having distinct properties contained inside the volume

Ω ⊂ Rd (d = 2, 3) (Meury, 2007). Seafloor acoustic propagation is examined

analytically and numerically by the Helmholtz equation:

Δu+
ω2

c2
u = 0, (1.1)

which describes all time-harmonic solutions of the wave equation. A time-harmonic

function is a scalar field whose time dependence is a sinusoidal, in the form

u(x, t) = R{u(x) exp(−iωt)} = R{u(x)} cosωt+ I{u(x)} sinωt, (1.2)

where ω > 0 denotes the angular frequency and a complex-valued u depends on the

position in space x but not time variable t. In other words, the equation explains
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the flux of particles as they propagate through some medium. Here u represents the

acoustic wave pressure, k = 2π
λ
=ω

c
represents the wavenumber, where λ refers to the

wavelength associated with a specific sound frequency. The wavenumber is also equal

to the ratio of angular frequency ω and sound speed c.

We can derive the Helmholtz from the time-dependent wave equation, namely:

vtt = (c(x))2Δv + F (t, x) (1.3)

where c(x) is local wave speed and F (t, x) is a source that injects waves into a solution.

Now suppose we look for solutions that generate plane waves with a singular angular

time frequency ω, i.e.,

v(t, x) = u(x) exp(−iωt), (1.4)

F (t, x) = g(x) exp(−iωt) (1.5)

Substituting (1.4) and (1.5) into (1.3) yields:

vtt = u(x)[(−iω) exp(−iωt)t = u(x)(ω)2 exp(−iωt) = ω2u(x) exp(−iωt).

Hence, Δv = Δu · exp(−iωt). Finally, we get after dividing both sides by exp(−iωt)

the following result:

vtt + c(x)2Δv = u(x)ω2 + c(x)2Δu = g(x).

2



In conclusion, we get the Helmholtz equation: Δu(c(x))2 + ω2u = g(x).

If we assume c(x) > 0, then Δu(x) + ω2

c(x)2
u(x) = g(x). We can denote 1

c(x)
by

n(x), the index of refraction. So altogether we derived the inhomogeneous Helmholtz

equation from the wave equation:

Δu(x) + n(x)2ω2u(x) = g(x), x ∈ Rd (1.6)

The time-dependent wave equation reduces to the time-harmonic Helmholtz equation

(Runberg, 2012-04).

1.1.1 Helmholtz Equation and the Fourier Transform

One important implication of Fourier Analysis is that any square-integrable time-

dependent field U can be written as a continuous linear combination of time-harmonic

fields exp(iωt)Û(x,ω) with varying frequencies ω ∈ R, where Û is the Fourier

transform of the time-dependent field U (Moiola, n.d.):

U(x, t) =
1√
2π

�

R
exp(iωt)Û(x,ω) dω (1.7)

Û(x,ω) =
1√
2π

�

R
exp(−iωt)U(x, t) dt. (1.8)

If U is a solution to (1.3), i.e., the wave equation with wave speed c, then its Fourier

transform Û evaluated at a given frequency, i.e., u(x,ω) = Û(x,ω), is a solution to

the Helmholtz equation with wavenumber k = ω
c
(Moiola, n.d.). Thus, when studying

u and the Helmholtz equation, we are working in the “frequency domain” as opposed

to the “time domain” for the wave equation.
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1.2 Canonical Solutions to the Helmholtz Equation

The solutions to the Helmholtz equations are generally complex and usually cannot

be written explicitly. There are exceptions, however, which we present here.

1.2.1 Plane Wave Solutions

We take the index of refraction n(x) ≡ n to be constant. Then we obtain the general

solution

u(x) = Aeiωnk̂·x (1.9)

Here A is the amplitude and k̂ indicates the direction of propagation where |k̂| = 1.

(1.9) is a plane wave solution. Furthermore, in the time-dependent setting we also

obtain a plane wave:

v(t, x) = u(x)e−iωt = Aeiωnk̂·x · e−iωt = Aeiωn(k̂·x−ct) (1.10)

where c = 1
n
, where n is constant.

Radial Wave Solutions Consider the function

u =
eikr

r
, (1.11)

where r = |x−x0| for some x,x0 ∈ Rd. For this function to be a solution to (1.4), we

need to consider some domain Ω ⊂ R3 and there exists some neighborhood around the

point x0 not included in Ω (Matheson, 2015). Then we can use the Laplace operator

4



in spherical coordinates to check that the function is a solution to the Helmholtz

equation (1.1) as follows:

1

r2
∂

∂r

�
r2

∂

∂r

�eikr
r

��
+ k2 e

ikr

r
=

1

r2
∂

∂r
(eikr(ikr − 1)) + k2 e

ikr

r

= −k2 e
ikr

r
+ k2 e

ikr

r
= 0,

where k = ω
c
is the wave number. Note that since the function is radial it can only

satisfy boundary conditions that are also radial (Matheson, 2015).

In R3 the solution we obtain for (1.6) is a circular wave, a wave emanating from

a point source. The solution is given by

uc(x) =
eiωn|x|

4π|x| , (1.12)

which is the Green’s function for the Helmholtz equation in three dimensions. In two

dimensions the corresponding Green’s function is given by the first Hankel function.

In order to find a unique solution to the Helmholtz equation, one needs to specify

boundary conditions at infinity. We typically employ the Sommerfield radiation

condition and say a solution to this equation is radiating:

lim
|x|→∞

|x|n− 1
2 (

∂

∂|x| − ik)u(x) = 0. (1.13)

1.2.2 Circular Waves and Bessel Functions

We look for solutions to the Helmholtz equation that are separable in polar

coordinates (x1, x2) = (r cos θ, r sin θ). In two dimensional polar coordinates, the

5



Helmholtz equation can be rewritten as

1

r

∂

∂r

�
r
∂u

∂r

�
+

1

r2
∂2u

∂θ
+ k2u = 0.

Employing separation of variables u(r, θ) = R(r)Θ(θ), the Helmholtz equation can be

rewritten as

R��(r)Θ+
1

r
R�(r)Θ+

1

r2
Θ��(θ)R + k2RΘ = 0.

Multiplying both sides by r2/(RΘ) yields the result

�r2
R
R��(r) +

r

R
R�(r) + k2r2

�
+
� 1

Θ
Θ��(θ)

�
= 0. (1.14)

The second, angular part of (1.14) has to be periodic of period 2π, so we take the

circular harmonic Θ(θ) = exp(imθ) for m ∈ Z. Then Θ��(θ) = −m2Θ(θ), so in

cancelling Θ from (1.14) and multiplying both sides by r2, we obtain that R satisfies

r2R��(r) + rR�(r) + (r2k2 −m2)R(r) = 0. (1.15)

Setting k = 1, (1.15) is a second-order linear ODE called the Bessel differential

equation. This ODE has the solution

R(r) = CmJm(kr) +DmYm(kr), (1.16)
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where Cm, Dm are constants and Jm(x), Ym(x) are Bessel functions of the first kind

and Bessel functions of the second kind respectively (Weisstein, 2015).

The Hankel functions are complex-valued linear combinations of the Bessel

functions

H(1)
m (r) := Jm(r) + iYm(r) (1.17)

H(2)
m (r) := Jm(r)− iYm(r). (1.18)

Thus, we deduce that for any m ∈ Z, the two fields

Jm(kr) exp(imθ)

Ym(kr) exp(imθ),

and their linear combinations are the solutions of the Helmholtz equations separable in

polar coordinates; they are called circular waves or Fourier-Bessel functions (Moiola,

n.d.). Taking complex-valued linear combinations of the Fourier-Bessel functions

yields special circular waves called the Fourier-Hankel functions, namely

H(1)
m (kr) exp(imθ) := Jm(kr) exp(imθ) + iYm(kr) exp(imθ) (1.19)

H(2)
m (kr) exp(imθ) := Jm(kr) exp(imθ)− iYm(kr) exp(imθ). (1.20)

These circular waves are of prime importance for exterior problems posed in

unbounded domains in R2 (Moiola, n.d.).

7



1.3 Domain Problems

Solutions to the Helmholtz equations exhibit some general properties that differ

depending on the type of domain problem.

Assuming time-harmonic waves, i.e., waves of the form:

v(t, x) = u(x)eiωt, (1.21)

the wave equation can then be reduced to the Helmholtz equation:

Δu(x) +
ω2

c(x)2
u(x) = 0, x ∈ Ω, (1.22)

with boundary conditions, which can be Dirichlet, i.e.,

u(x) = 0, x ∈ ∂Ω (1.23)

or Neumann, i.e.,

∂u(x)

∂n
= 0, x ∈ ∂Ω (1.24)

Here the domain Ω is bounded and what we have is an interior problem. The interior

problem formulation is well-posed for almost all values of ω. However, the problem is

ill-posed for a discrete set of ω, which corresponds to the eigenvalues of operator S =

− 1
n2Δ. That is, Su = ω2u, so ω denotes eigenvalues corresponding to eigenfunction

8



u. Here we are treating Helmholtz equation as a solution operator:

T : u → Δu+ n2ω2

x → x

(1.25)

Then T is singular and there is either an infinite set of solutions or no solution

(Runberg, 2012-04).

In exterior problems, the Helmholtz equation is set in an unbounded domain.

The exterior problems of present concern are scattering problems, which refer to

the propagation of waves colliding with some object. That is, we are considering

the problem of a wave hitting an impenetrable obstacle. More precisely, we let Ω

denote some object, or scatterer, illuminated by an incident wave uinc. Specifically,

let uinc(x) = exp
�
ikx · θ̂

�
be a plane wave with |θ̂| = 1 that is propagating rightward

and either upward or downward in the plane. The incident wave is also called the

“incoming field”, “incoming wave”, or “incident field”. Then the scattered field uscat

is the wavefield generated by uinc colliding with bounded domain Ω. uscat can also be

thought of as the “reflected wave”.

More formally, if we let utot denote the sum of the known incident wave uinc and

the unknown scattered wave uscat, and assume utot = 0 on the boundary of the object

∂Ω, then the scattering problem is to find the scattered field uscat that satisfies:

Δuscat(x) + ω2uscat(x) = 0, x �∈ Ω (1.26)

9



Figure 1.1 Illustration of a direct scattering problem: The scatterer V is subject to
the incident plane wave ui in the k̂-direction. Scattering wave us is detected in the
x̂-direction, adopted from (Sohl et al., 2008).

and one of either

uscat(x) = −uinc(x), x ∈ ∂Ω (1.27)

which denotes inhomogeneous Dirichlet boundary condition or

∂uscat(x)

∂n
= −∂uinc(x)

∂n
, x ∈ ∂Ω (1.28)

which denotes the inhomogeneous Neumann boundary condition.

The scattering problem is well-posed if additional boundary conditions are given

at infinity, namely, the Sommerfield radiation conditions (8) are satisfied (guarantees

the scattered wave is outgoing).

In many cases when the inhomogeneous Helmholtz equation models a physical

situation with waves inside a bounded domain (interior problem), there is often some

damping in the material which defines solution at resonant frequencies. We thus add

10



a damping term to the equation, i.e.,

∇2u(x) + n(x)2ω2u(x) + iω2αu(x) = 0, x ∈ Ω, (1.29)

where α > 0 denotes the damping coefficient. This formulation is well-posed for all

frequencies ω, with the damping term making it so that the waves eventually die off

when traveling long distances and energy dissipating. (Runberg, 2012-04)

1.4 Fundamental Solution of the Helmholtz Equation

In acoustic scattering problems, the incident wave (or incident field) is generated by

a point source, i.e., for some z ∈ Rd \ Ω,

uinc(x) = Gk(x, z), x ∈ Rd \ {z}, (1.30)

where Gk is the fundamental solution or Green’s function of the Helmholtz equation,

given in the two-dimensional or three-dimensional cases by

Gk(x,y) :=





i
4
H

(1)
0 (k|x− y|), d = 2

exp(ik|x−y|)
4π|x−y| , d = 3,

(1.31)

for x,y ∈ Rd,x �= y, where H
(1)
ν denotes the Hankel function of the first kind of order

ν. These Green’s functions correspond to the solution of the Helmholtz equation with

a Dirac δ-function source at y (Atle, 2006). When representing a source far from the

11



scatterer, the incident field is a plane wave, i.e., for some θ̂ ∈ Rd with |θ̂| = 1,

uinc(x) = exp
�
ikx · θ̂

�
, x ∈ Rd. (1.32)

1.5 Helmholtz Problem and Boundary Conditions

The Helmholtz equation is an elliptic PDE and to obtain a well-posed problem we need

suitable boundary conditions. In this section, we summarize the different boundary

conditions mentioned earlier along with their physical applications.

The Helmholtz problem is commonly considered in an unbounded exterior

domain with scatterers at the boundary and the Sommerfield radiation condition

at infinity. However, for numerical experimental purposes, we often formulate this

problem on a bounded domain instead of an unbounded domain.

1.5.1 Sommerfield Radiation Condition

We need a condition that represents the behavior of a wave at infinity to guarantee

unique a solution to wave problems on unbounded domains. We addressed earlier

that we impose the Sommerfield radiation condition to do accomplish this.

Assuming no waves are reflected at infinity as is typical for wave propagation

in free space, let u(r) be the solution to a homogeneous Helmholtz equation in an

exterior domain Ω+ = Rd \ Ω̄, where Ω̄ is the closure of domain. We assume that

a wave source is placed at the origin and denote by R the radial distance from the

origin to the observation point.

12



To absorb waves at infinity, we impose the Sommerfield radiation condition,

which can also be written in polar coordinates as

lim
R→∞

R
d−1
2 (

∂u

∂R
− iku) = 0. (1.33)

1.5.2 Dirichlet Boundary Condition

We impose Dirichlet boundary conditions in bounded domains when the material of

a surface has much lower resistance (or impedance) than the carrier medium. The

Dirichlet boundary conditions are as follows:

u = 0 on ∂Ω. (1.34)

1.5.3 Neumann Boundary Condition

Neumann boundary conditions are imposed for bounded domains when the surface

material has much higher resistance (or acoustic impedance) than the carrier medium:

∂u

∂n
= 0 on ∂Ω. (1.35)

Here n denotes the outer normal vector on the boundary of the domain.

1.5.4 Robin Boundary Condition

The Robin boundary condition is a generalization of the Dirichlet and Neumann

boundary conditions. Namely, this condition models the acoustic impedance of the

13



boundary in general:

∂u

∂n
+ iβu = 0 on ∂Ω. (1.36)

Here i is the imaginary unit and β is a modifying coefficient that measures the

admittance of the surface.

1.6 Green’s Identities

In this section, we briefly recall Green’s identities which will prove useful for the

remainder of this thesis.

Let Ω be simply connected and a bounded region in R2 with a C2 boundary ∂Ω

and let F(x) ∈ C1(Ω)3 be a vector-valued function or vector field. If n is the outward

unit normal vector to ∂Ω, then we can state the divergence theorem as follows:

Theorem 1.6.1 (Divergence Theorem).

�

Ω

∇ · F(x) dx =

�

∂Ω

F(x) · n(x) dx.

For u, v ∈ C2(Ω), set F(x) = u(x)∇v(x) and substitute into the divergence

theorem to obtain the following result:

Green’s First Identity:

�

Ω

(uΔv +∇u ·∇v) dx =

�

∂Ω

u
∂v

∂n
ds(x).
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You can also take F(x) = v(x)∇u(x) and switch u and v in the integrands:

�

Ω

(vΔu+∇v ·∇u) dx =

�

∂Ω

v
∂u

∂n
ds(x).

Subtract the previous two equations to obtain:

Green’s Second Identity:

�

Ω

(uΔv − vΔu) dx =

�

∂Ω

�
u
∂v

∂n
− v

∂u

∂n

�
ds(x).

We will mainly make use of Green’s First identity in deriving the weak formulation

of acoustic scattering problems.
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1.7 Finite Element Method for the Helmholtz Equation

Two common approaches to solving elliptic PDEs like the Helmholtz equation are

finite difference methods and variational methods. The finite element method (FEM)

falls in the latter category. The FEM is a method for boundary value problems

that discretize the domain, which is divided into small regions or elements. Meshing

describes the process of subdividing into non-overlapping elements.

One of the first steps in FEM is to identify the PDE associated with the physical

phenomenon we are studying. The PDE (or differential form) is the strong form and

the integral form we derive is the weak form.

The measurable, bounded domain, Ω ∈ Rd, is discretized with a standard

regular mesh. We partition the domain Ω into a finite set of disjoint cells T =

{K}, where K ⊂ Ω, such that

�

K∈T
K = Ω. (1.37)

These cells form the regular mesh, which is typically made of simple polygonal shapes,

though other more sophisticated shapes are possible, such as a non-polygonal domain

generated by curved cells.

The original PDE (1.1) is referred to as the strong form, and the weak

formulation a(u, v) = L(v) is a re-formulation of the strong form. Here, H1 is a

function space known as a Sobolev space where all the functions are bounded and

quadratic integrable.
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1.7.1 Mathematical Formalism of Finite Element Method

In this section, we first collect some necessary results from functional analysis and

the weak theory of elliptic PDEs to better formalize the FEM method. We start by

formally defining the function spaces we need.

Function Spaces

Let Ω be an open subset of Rd, d ∈ N. We restrict our attention to real-valued

functions, f : Rd → R, on the given domain, Ω, that are Lebesgue measurable. We

denote the Lebesgue integral of f : Rd → R with respect to the Lebesgue measure µ

by

�

Ω

f(x)dµ. (1.38)

Let p ∈ R with 1 ≤ p ≤ ∞. Then we define Lp spaces in the following manner:

Lp(Ω) :=
�
f : Ω → Rd : �f�Lp(Ω) < ∞

�
. (1.39)

with

�f�Lp(Ω) := �f�p =
� �

Ω

|f(x)|pdµ
� 1

p
, 1 ≤ p ≤ ∞, (1.40)

and

�f�L∞(Ω) := �f�∞ = ess sup
x∈Ω

|f(x)|. (1.41)
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Lp spaces are function spaces that generalize the p-norm for finite-dimensional vector

spaces and are Banach spaces of Lebesgue integrable functions. (A Banach space is

a complete normed vector space, i.e., all Cauchy sequences of vectors are convergent

to a vector in the space under the norm).

For p = 2, Lp(Ω) is a Hilbert space with inner product

(f, g) := �f, g�L2(Ω) =

�

Ω

f(x)g(x) dx. (1.42)

A Hilbert space H is a complex inner product space that is complete under the

associated norm, and so is a strict subset of a Banach space.

We also define the following:

Lloc
1 (Ω) :=

�
f : Ω → R is measurable and locally integrable

�
.

By “locally integrable”, we mean that f ∈ L1(K) (p = 1) for all compact subsets

K ⊂ Ω. Lloc
1 (Ω) is the space of all locally integrable functions. We can now define the

weak derivative:

We say a function f ∈ Lloc
1 (Ω) (f is locally integrable) is weakly differentiable

with respect to xi if there is a g ∈ Lloc
1 (Ω) (that is, if there exists a locally integrable

g) such that

�

Ω

g(x)φ(x)dx = −
�

Ω

f(x)∂xi
φ(x)dx ∀φ ∈ C∞(Ω). (1.43)

Then g is referred to as the weak (partial) derivative and can be written as g = ∂xi
f .
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We briefly introduce notation to define a Sobolev space. A multi-index is an

n-tuple of nonnegative integers, usually denoted by α or β:

α = (α1, ...,αn), β = (β1, ..., βn).

If α is a multi-index, then we define

|α| = α1 + · · ·+ αn,

which we call the order or degree of our multi-index α. We can then define higher-

order weaker derivatives as:

∂α(f) =
∂|α|f

∂xα1
1 . . . ∂xαn

n

. (1.44)

We can now say that a locally integrable function g(x) = ∂αf(x) is a higher-order

weak derivative of f(x) if

�

Ω

g(x)φ(x)dx = (−1)|α|
�

Ω

f(x)∂αφ(x)dx ∀φ ∈ C∞(Ω), (1.45)

that is, for all infinitely differentiable functions φ with compact support in Ω. We

can now define Sobolev spaces:

For k ∈ N ∪ {0} and 1 ≤ p ≤ ∞. The Sobolev space of order k is defined as

W k,p(Ω) :=
�
f ∈ Lp(Ω) : ∂α(f) ∈ Lp(Ω)

�
. (1.46)

In other words, a Sobolev space is a function space (vector space of functions)

equipped with a norm that is a combination of Lp−norms of the function together

with its weak derivatives up to a given order. (Nair, 2007)
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Remark:

(1) W k,p(Ω) is a complete, normed function space and thus a Banach space with

respect to the norm �·�k,p. In particular, W k,p(Ω) is a subspace of the Banach space

Lp(Ω).

(2) We introduce the standard norm in W k,p(Ω):

�u�Wk,p(Ω) =

��

Ω

�

|α|≤k

|∂αu|pdx
� 1

p

. (1.47)

(3) W p,0(Ω) = Lp(Ω).

(4) Hk(Ω) := W k,2(Ω) is a Hilbert space with respect to the inner product

�f, g�k :=
�

|α|≤k

�∂αf, ∂αg�, f, g ∈ H2(Ω). (1.48)

(5) The Sobolev space W 1,p(Ω) can be also introduced by the following definition:

W 1,p(Ω) =

�
u ∈ Lp(Ω)

�����∃g1, g2, . . . , gN ∈ Lp(Ω) such that (1.49)

�

Ω

u
∂ϕ

∂xi

= −
�

Ω

giϕ ∀ϕ ∈ C∞
c (Ω), ∀i = 1, 2, . . . , N

�
. (1.50)

We then set

H1(Ω) = W 1,2(Ω). (1.51)
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In other words, the Sobolev space H1(Ω) is the space of complex-valued L2(Ω)

functions, whose first distributional partial derivatives are in L2(Ω). (By distributional

derivative, we mean there is a function w ∈ L2(Ω) such that
�
Ω
v ∂ϕ
∂x1

= −
�
Ω
wϕ ∀ϕ ∈

C∞
c (Ω)) (Nair, 2007).

That is,

H1(Ω) :=
�
v ∈ L2(Ω) : ∂xi

v ∈ L2(Ω) exists for all i = 1, . . . , d
�
.

�u, v�H1(Ω) := �u, v�L2(Ω) +
d�

i=1

�∂xi
u, ∂xi

v�L2(Ω).

�v�H1(Ω) =

�
�v�2L2(Ω) +

d�

i=1

�∂xi
v�2L2Ω)

�
.

For u ∈ W 1,p(Ω) we define ∂u
∂xi

= gi, and write

∇u =

�
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xN

�
. (1.52)

The space W 1,p(Ω) is then equipped with the norm

�u�W 1,p = �u�p +
N�

i=1

����
∂u

∂xi

����
p

. (1.53)

(6) Building on (5), we can alternatively define the Sobolev spaces of order k as

W k,p(Ω) =

�
u ∈ Lp(Ω)

����� ∀α with |α| ≤ k, ∃gα ∈ Lp(Ω) such that (1.54)

�

Ω

u ∂αϕ = (−1)|α|
�

Ω

gαϕ ϕ ∈ C∞
c (Ω)

�
. (1.55)
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Note that C∞
c (Ω) refers to the set of complex-valued C∞ functions defined on Ω whose

support is compactly contained in Ω.

1.7.2 More Important Properties

(Hk(Ω), �·, ·�Hk) is a Hilbert space for every k ∈ N0. Furthermore, we take H0(Ω) =

L2(Ω). We also note that

C∞,k(Ω) :=
�
v ∈ C∞(Ω) :

�

Ω

|∂αv(x)|2 dx < ∞ for all α ∈ Nd
0 with |α|1 ≤ k

�

is dense in Hk(Ω) with respect to �·�Hk(Ω), i.e., for every u ∈ Hk(Ω) and every � > 0

there is a v� ∈ C∞,k(Ω) such that �v� − u�Hk(Ω) < � (Jahnke, n.d.). This leads to the

following definition that will prove important when deriving the variational form of

some elliptic problems:

The Sobolev space Hk
0 (Ω) is the completion of C∞

c (Ω) with respect to �·�Hk(Ω),

i.e.,

u ∈ Hk
0 (Ω) ⇐⇒ There are vn ∈ C∞

c such that lim
n→∞

�u− vn�Hk(Ω) = 0.

So Hk
0 (Ω) is a closed subspace of Hk(Ω). Furthermore, if the boundary ∂Ω is a C1

set, then v ∈ C(Ω) ∩Hk
0 (Ω) implies that v(x) = 0 for all x ∈ ∂Ω.

1.7.3 Weak Solution of Elliptic PDEs

Consider PDEs of the form

Lu = f,
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where L is a linear differential operator of the form

Lu = −
n�

j,k=1

∂j(ajk(x)∂ku) +
n�

j=1

bj(x)∂ju+ c(x)u (1.56)

acting on functions u : Ω → R on a bounded open set Ω ⊂ Rd. Here ajk, bj, c : Ω → R

and f : Ω → R are functions given on Ω. The given coefficient functions satisfy

ajk, bj, c ∈ L∞(Ω), ajk = akj.

We say the operator L is elliptic if the matrix (ajk) is positive definite. Ellipticity can

also be characterized as follows: the operator L is elliptic on Ω if there exists some

constant θ > 0 satisfying

n�

j,k=1

ajk(x)ξjξk ≥ θ|ξ|2 (1.57)

for x almost everywhere in Ω and every ξ ∈ Rn. The Laplacian operator L = −Δ is

an example of an elliptic operator on any open set, with θ = 1.

Assuming all functions and the domain are sufficiently smooth, we can multiply

by a smooth test function (also known as a bump function) v ∈ C∞
c (Ω), integrate

over x ∈ Ω, and integrate by parts, noting that

�

Ω

∂j(bju)v dx = −
�

Ω

bju∂jv dx,
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which leads to the condition

n�

j,k=1

(ajk∂ju, ∂kv) +
n�

j=1

(bj∂ju, v) + (cu, v)−
n�

j,k=1

(ajk∂kunj, v)∂Ω = (f, v), (1.58)

where n is the outward unit normal on ∂Ω and

(f, g) :=

�

Ω

f(x)g(x) dx

(f, g)∂Ω :=

�

∂Ω

f(x)g(x) dx .

This formulation requires ajk, bj, c ∈ L∞(Ω) and f ∈ L2(Ω). We then search for the

weak solution u ∈ V , where V is a suitably chosen function space satisfying (1.58)

for all v ∈ V including the boundary conditions. Our suitably chosen function space

V will depend partly on our boundary conditions (Clason, 2017).

Dirichlet Conditions: Here u = g on ∂Ω for a given g ∈ L2(Ω). If g = 0, then

we have a homogeneous Dirichlet condition and we take V = H1
0 (Ω), in which case

the boundary integrals in (1.58) vanish since v = 0 on ∂Ω. We can state the weak

formulation as follows: We define a bilinear form

a : H1
0 (Ω)×H1

0 (Ω) → R
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by

a(u, v) :=
n�

j,k=1

(ajk∂ju, ∂kv) +
n�

j=1

(bj∂ju, v) + (cu, v) = (f, v),

for all v ∈ H1
0 (Ω).

Neumann Conditions: We require
�n

j,k=1 ajk∂kunj = g on ∂Ω for a given

g ∈ L2(∂Ω). Substitute this in boundary integral of (1.58) and take V = H1(Ω).

We then look for u ∈ H1(Ω) satisfying

a(u, v) = (f, v) + (g, v)∂Ω

for all v ∈ H1(Ω) (Clason, 2017). There is also a weak formulation for Robin (or

impedance) conditions which generalizes the Neumann conditions case.

Robin/Impedance Conditions: Set βu +
�n

j,k=1 ajk∂kunj = g on ∂Ω for given

g ∈ L2(∂Ω) and β ∈ L∞(∂Ω). Substitute into the boundary integral and then the

weak form will be to find a u ∈ H1(Ω) satisfying

aR(u, v) = a(u, v) + β(u, v)∂Ω = (f, v) + (g, v)∂Ω

for all v ∈ H1(Ω) (Clason, 2017).
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1.7.4 Lax-Milgram Theorem

To conclude, we state the following theorem necessary for guaranteeing the existence

and uniqueness of a solution of the following general form of a linear variational

problem:

for a given Hilbert space V , a bilinear form a : V̂ × V → R and a continuous linear

function L : V̂ → R, find a u ∈ V such that

a(u, v) = L(v) ∀v ∈ V. (1.59)

This theorem is a generalization of the Riesz representation theorem and is known as

the Lax-Milgram theorem:

Theorem 1.7.1 (Riesz-Representation Theorem for Hilbert Spaces). Any continuous

linear functional L on a Hilbert space H can be represented uniquely as

L(v) = (u, v),

for some u ∈ H. Additionally,

�L�Ĥ = �u�H,

where Ĥ is the dual space of H.

Thus, the Riesz representation theorem establishes a connection between the

dual space of a Hilbert space and the Hilbert space itself, namely, there is a natural

isometry L between H and Ĥ (Brenner and Scott, 2007).
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Theorem 1.7.2 (Lax-Milgram Theorem). Let a Hilbert space V , a bilinear form

a : V̂ × V → R, and a continuous linear function L : V̂ → R be given satisfying the

following conditions:

• There exists c1 > 0 such that a(v, v) ≥ c1�v�2V ∀v ∈ V (coercivity),

• There exist c1, c2 > 0 such that a(u, v) ≥ c2�u�V �v�V ∀u, v ∈ V

(continuity).

Then the linear variational problem stated has a unique solution, i.e., there exists

u ∈ V to our problem satisfying

�u�V ≤ 1

c1
�L�V̂ , (1.60)

where V̂ is the dual space of V . (Nair, 2007).

Proofs of both theorems can be found in Brenner and Scott (Brenner and Scott,

2007).

If the two properties continuity and coercivity hold, then there are two

important consequences. The first is that the Lax-Milgram theorem implies that

there exists a unique solution to the variational problem. The second consequence

concerns the weak Galerkin discretization of the variational problem, namely, given

Vh, a finite-dimensional subspace of V ,

we can find uh ∈ Vh such that a(uh, vh) = L(vh) for all vh ∈ Vh.

Hence, if continuity and coercivity hold, then the Lax-Milgram theorem implies that

the Galerkin solution uh exists and is unique (Moiola and Spence, 2014).
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CHAPTER 2

OVERVIEW OF THE FINITE ELEMENT METHOD WITH
NUMERICAL EXAMPLES

We again consider a general linear variational problem written in the following

canonical form for elliptic PDEs: given a Hilbert space V , a bilinear form a : V̂ ×V →

R and a continuous linear function L : V̂ → R, we want to find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V̂ ,

where V̂ is the dual space of V . We know this problem has a unique solution if it

satisfies the conditions stated in the Lax-Milgram theorem.

We then discretize the variational problem by restricting it to a pair of discrete

test and trial spaces. That is, the function space V on which the variational

formulation is defined is replaced by a finite-dimensional subspace Vh ⊂ V . The

approximation uh of the solution u is expressed as a linear combination of the finite

number of basis functions φj(x) which are continuous, nonzero on only on small

subdomains.

Hence, we approximate the solution to the linear elliptic boundary value

problem with the weak Galerkin approximation: we want to find uh ∈ Vh ⊂ V

such that

a(uh, vh) = (f, vh) ∀v ∈ Vh, (2.1)

where (·, ·) is the L2(Ω) inner product and a(·, ·) is a bilinear form related to the

weak form of the PDE. The finite element method then becomes a systematic way

to construct the subspace Vh and to derive a matrix equation from the approximate

problem. The finite element space Vh constitutes a space spanned by a set of basis

functions Vh=span{φi}. Each element in Vh is related to a vector of coefficients
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x ∈ Rn:

v =
n�

i=1

(x)iφi. (2.2)

We then obtain a matrix equation of the form:

Ax = b. (2.3)

where Ai,j = a(φh,φi) and bi = (f,φi).

So in finite element analysis, we are taking a PDE (strong form), re-formulating

it into its weak form, and reducing the boundary value problem to a matrix algebra

one, as we shall see with the Helmholtz equation.

Finite Elements

A finite element, in the most abstract setting, is defined as a triple (K,P ,N ):

1. Let K ⊆ Rn denote a closed, bounded set with nonempty interior and a

piecewise smooth boundary. We call K the element domain.

2. Let PK ⊂ C(K) be a finite-dimensional space of continuous functions on K

with dimPK = pK . We call P the space of shape functions.

3. NK = {N1, N2, . . . , Nk} is a basis for P̂ and denotes the set of nodal variables.

That is, NK is an indexed family of linear functionals on PK .

Then (K,PK ,NK) is called a finite element. Assume the nodal variables lie in the

dual space of some larger function space, e.g., a Sobolev space (Brenner and Scott,

2007). Let Ω be the domain on which the problem is defined. Then a finite element

method consists of defining n elements {(Kr,PKr ,NKr}r∈[1,n] in such a way so that
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(i) Ω =
�n

r=1 Kr

(ii) dim(Kr ∩Ks) < dimΩ ∀r, s ∈ [1, n], r �= s

(iii) Ph = {u ∈ C(Ω) : r ∈ [1, n], u
��
Kr

∈ PKr},

where Ω denotes the closure of Ω (Matheson, 2015).

We define the mesh of the finite element method as the set K = {Kr}r∈[1,n].

Note that for nodal elements, we can find a basis {φ1,φ2, . . . ,φk} of P dual to N ;

i.e., Ni(φj) = δij, where δij denotes the Kronecker delta, defined as

δij :=





1 i = j

0 i �= j

(2.4)

This basis is the nodal basis of P (Brenner and Scott, 2007).

Example of Nodal Elements: Lagrange Elements

The Lagrange elements are a popular family of nodal elements where the function

space PK is the space of polynomials of degree ≤ k and a basis for PK satisfying

Ni(φj) = δij consists of the Lagrange polynomials, i.e.,

N i
K(φ) :=

�

0<j≤p

φ− φj
K

φi
K − φj

K

, i �= j. (2.5)

When the domains are simplexes, these elements are called Pk elements where k is

the degree of the polynomial (Matheson, 2015). In this thesis, the simulations we

produce incorporate piecewise linear and quadratic Lagrange finite elements, i.e., P1

and P2 finite elements respectively.
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2.1 Weak Form of Helmholtz Equation

Figure 2.1 Left: Plot of the FEM solution to u = cos(2πω(k1x+ k2y)) of the
Helmholtz boundary value problem (2.1), with ω = 2.0, k1 = cos

�
π
6

�
, and k2 = sin

�
π
6

�
.

Here we have a unit square 32-by-32 mesh. Right: Plot of the true solution, which
is a plane wave rotated by π

6
rad. The third plot is the plot of the absolute error

between the FEM solution and the exact solution. These plots were implemented
using the FEnICS computing platform.

We will see later in this thesis that the FEM discretization of the governing

time-harmonic acoustic Helmholtz equation in underwater domains enables accurate

modeling of the seafloor environment. In this chapter, FEM discretization is used to

simulate plane waves by solving the Dirichlet problem in 2D:





Δu+ k2(x)u = f, x ∈ Ω

u = 0, x ∈ ∂Ω,

(2.6)
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where Ω is an open bounded domain in R2, k(x) = ω
c(x)

is the inhomogeneous wave

number, c = c(x) is the sound speed, and f ∈ L2(Ω) is the source.

We use a finite element method to approximate solution to (1.17) with Dirichlet

boundary conditions. Here

V = H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},

Vh = {piecewise linear polynomials that are 0 on ∂Ω}.

The standard weak formulation is given by:

Find u ∈ V , such that a(u, v) = L(v), ∀v ∈ V ,

where

a(u, v) :=

�

Ω

∇u ·∇v dV −
�

Ω

k2uv dx, (2.7)

L(v) :=

�

Ω

fv dx. (2.8)

For the Helmholtz equation, we have the k-dependent inner product and norm

(u, v)1,k,Ω :=

�

Ω

�
∇u ·∇v + k2uv

�
dx,

�v�21,k,Ω := �∇v�L2(Ω) + k2�v�2L2(Ω),

one the space H1(Ω).
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For the Dirichlet problem of the Helmholtz equation,continuity of a(u, v) follows

from the Cauchy-Schwarz inequality, namely

|a(u, v)| ≤ �∇u�L2(Ω)�∇v�L2(Ω) + k2�u�L2(Ω)�v�L2(Ω)

≤ (1 + k2)�u�1,k,Ω�v�1,k,Ω.

However, the BVP does not have a unique solution if the wavenumber k2 = λj

for λj an eigenvalue of the negative Laplacian in Ω with zero boundary conditions.

That is, a(u, v) cannot be bounded below by �v�21,k,Ω for all k > 0. If k2 = λj, then

a(u, v) = 0 for uj, the corresponding eigenfunction of the eigenvalue λj. Furthermore,

if k2 > λ1 (the largest Laplace-Dirichlet eigenvalue), then the bilinear form a takes

both positive and negative real values (Moiola and Spence, 2014). Thus, the bilinear

form a is not coercive. Although a(·, ·) is not coercive, the Fredholm Alternative

implies that if k2 is not an eigenvalue of the negative Laplacian, then a solution to

the variational problem exists and is unique (Moiola and Spence, 2014). In summary,

the Helmholtz equation in Ω with Dirichlet boundary conditions is not well-posed for

every k, especially large k, i.e., this makes high-frequency problems harder to solve

than low-frequency problems.

Figure 2.4 and Tables 2.1 and 2.2 were produced from considering the Neumann

problem on a unit square, Ω, with boundary Γ:





Δu+ k2u = f x ∈ Ω

∇u · n = 0 x ∈ Γ,

(2.9)

for some known function f . Then the weak form is similar to the weak form for the

Dirichlet problem, namely find a u ∈ W such that a(u, v) = L(v) for all v ∈ W ,
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Figure 2.2 Plot of the true solution u(x, y) = cos(2πx) cos(2πy) and the approximate
FEM solution to the Neumann problem. The third plot is the absolute error between
the true solution and the approximate FEM solution.

where





a(u, v) :=

�

Ω

�
∇u ·∇v − k2uv

�
dx,

L(v) :=

�

Ω

fv dx,

W := H1(Ω) = {v ∈ L2(Ω) : ∂xi
v ∈ L2(Ω), 1 ≤ i ≤ 2}.
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The Dirichlet problem, unlike the Neumann problem, has zero boundary conditions

on the unit square.

2.1.1 Convergence of Finite Element Method

Let s denote the degree of the polynomial of the finite element space, and assume

that the solution u ∈ Hs+1(Ω). Let uh denote the weak Galerkin approximation of u,

i.e., the finite element approximation. Then we have

�u− uh�L2 ≤ Chs+1, (2.10)

�u− uh�L∞ ≤ Chs+2, (2.11)

for some constant C (Villa, 2015). Tables 2.1 and 2.2 below show that the numerical

results are consistent with the finite element convergence theory. In particular, for

piecewise linear finite element P1 we observe second order convergence in the L2-norm

and third order convergence in the L∞-norm. For piecewise quadratic finite element

P2 we observe third order convergence in the L2-norm and fourth order convergence

in the L∞-norm.

Table 2.1 Error At The Vertex Values Of Mesh With N Degrees Of Freedom With
P1 Elements

N
�u−un�L2

�u�L2

�u−un�∞
�un�∞

32 0.005409 0.00416
64 0.001358 0.00103
128 0.000339 0.000259
512 0.000021253 0.000001623
1024 5.313×10−6 4.058×10−6
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Table 2.2 Error At The Vertex Values Of Mesh With N Degrees Of Freedom With
P2 Elements

N
�u−un�L2

�u�L2
:

�u−un�∞
�un�∞

:

32 6.93× 10−5 1.28× 10−5

64 8.62× 10−6 8.36× 10−7

128 1.07× 10−6 5.29× 10−8

512 1.68× 10−8 2.08× 10−10

1024 4.41× 10−9 3.73× 10−11

2.2 Point Source Problem: Helmholtz Equation With Damping Term

We derive the weak formulation of the Helmholtz equation with the damping term.

Namely, we consider the Helmholtz problem with a point source in the domain and

zero boundary conditions on the square:

Δu(x) + ω2u(x) + iωαu(x) = f, (2.12)

where f is the point source in domain. Here u is a complex-valued function u = ur+iui

where Re(u) = ur and Im(u) = ui. Substituting complex-valued u into (2.5), we

obtain

Δ(ur + iui) + ω2(ur + iui) + iαω(ur + iui) = f ,

and simplifying further, we then get

Δ(ur + iui) + ω2(ur + iui) + iαωur − αωui = f .

We can split the terms into real and imaginary parts:

Δur + ω2ur − αωui + i[Δui + ω2ui + αωur] = f ,
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to obtain a coupled system:





Δur + ω2ur − αωui = f,

Δui + ω2ui + αωur = 0.

(2.13)

We obtain the weak form by multiplying each equation by a separate test function

vr ∈ H1
0 (Ω) and vi ∈ H1

0 (Ω) respectively and integrating both sides of each equation.

We then integrate by parts and use of Green’s first identity.

First, we focus on the real part of our coupled system using Green’s first identity:

�

Ω

Δurvr dx+

�

Ω

ω2urvr dx−
�

Ω

αωuivr dx =

�

Ω

fvr dx

��

Ω

∇(ur) ·∇(vr) dx−
�

∂Ω

ur
∂vr
∂n

ds

�
+

�

Ω

ω2urvr dx−
�

Ω

αωuivr dx =

�

Ω

fvr dx.

We do the same for the imaginary part of the coupled system.

�

Ω

Δuivi dx+

�

Ω

ω2uivi dx−
�

Ω

αωurvi dx =

�

Ω

0dx,

��

Ω

∇(ui) ·∇(vi) dx−
�

∂Ω

ui
∂vi
∂n

ds

�
+

�

Ω

ω2uivi dx−
�

Ω

αωurvi dx = 0

(again applying Green’s first identity). Note that the surface integrals will reduce to

0 since vr, vi are 0 in ∂Ω, the boundary of our domain. In summary, we obtain:





�

Ω

(∇ur ·∇vr) + ω2urvr − αωuivr dx =

�

Ω

fvr dx,
�

Ω

(∇ui ·∇vi) + ω2uivi + αωurvi dx = 0.

(2.14)
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Thus, the weak form of the point source problem is





a(u, v) :=

�

Ω

(∇ur ·∇vr) + ω2urvr − αωuivr + (∇ui ·∇vi) + ω2uivi+

αωurvi dx,

L(u, v) :=

�

Ω

fvr dx,

V := H1
0 (Ω)×H1

0 (Ω) = {(vr, vi) ∈ H1(Ω) : vr|∂Ω = vi|∂Ω = 0},

with u = ur + iui and v = vr + ivi ∈ C.

The model problem we solve is the Helmholtz equation with a point source in

the domain and zero boundary conditions on the square, illustrated in Figure 2.5.

2.3 Forward Modeling of Underwater Acoustic Scattering

Time-harmonic acoustic waves in an ocean are modeled by the Helmholtz equation

inside a layer with suitable boundary conditions. When waves are intercepted by

a physical boundary, reflection and scattering occur. Scattering theory plays an

especially important role in modern physical applications, especially acoustic remote

sensing systems like SONAR (Sound Detection and Ranging). Acoustic scattering

problems are focused on the effect that inhomogeneous media have on incident

acoustic waves (Meury, 2007).

If we adopt the splitting of the total field utot into a prescribed incident part

uinc and a resulting scattered field uscat, we obtain a direct scattering problem, where

we want to find uscat given the knowledge of uinc and physical laws determining wave

motion (Meury, 2007). This differs from an inverse scattering problem, i.e., given

the scattered field uscat, one wants to compute the obstacle and/or incoming wave.

One type of direct scattering problem is the scattering of incident acoustic waves
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Figure 2.3 Solution to the Helmholtz problem with point source f = δ(x−(1.5, 2.5))
in square domain with zero boundary conditions on the square. Left-hand side is the
Real part of Solution; Right-hand side is the Imaginary part of the Solution.
Here the damping term α = 10 and the square wavenumber k = 10π. The waves
begin to “die out” before reaching the boundary. The square mesh with N=100 is the
domain for the Helmholtz problem with point source, with the last figure illustrating
the triangulation.

from impenetrable, homogeneous objects, i.e., Helmholtz scattering problems. In this

chapter, we first formulate the problem for direct acoustic wave scattering. We then

solve a specific Helmholtz scattering problem that will lay the groundwork for the

rest of this thesis.
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2.4 Problem Formulation

Consider the d − dimensional problem of scattering a time-harmonic incident field

by a bounded soft obstacle called Ω. Boundaries made up of sound-soft material have

very low acoustic impedance compared to acoustic impedance of the carrier medium

(Pedneault, 2018). What this entails is that when an incident wave advances over the

sound soft material, a scattered wave of the same magnitude but opposite polarity is

generated. In splitting up the total scattered field u into the incident field uinc and

uscat,i.e., u(x) = uscat(x) + uinc(x), we obtain the following boundary value problem

for the scattered field:





Δuscat + k2u = 0 in Rd \ Ω,

uscat + uinc = 0 on ∂Ω,

∂uscat

∂r
− ikuscat = o

�
r(1−d)/2

�
uniformly for r := |x| → ∞.

(2.15)

Another important problem is direct scattering from sound-hard obstacles where

the normal velocity of the total field vanishes on ∂Ω (Meury, 2007). This occurs when

the surrounding medium has much lower acoustic impedance than the boundary of

the object (Pedneault, 2018). This is represented by the following exterior Neumann

problem for the scattered field:





Δuscat + k2u = 0 in Rd \ Ω,

∂uscat

∂n
+ ∂uinc

∂n
= 0 on ∂Ω,

∂uscat

∂r
− ikuscat = o

�
r(1−d)/2

�
uniformly for r := |x| → ∞.

(2.16)
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In summary, the direct scattering problem in Rd with d = 2 (or d = 3) can be

posed as follows: given the propagation direction θ̂ = (cos θ, sin θ) ∈ S1 = {x ∈ R2 :

|x| = 1} defined on the unit circle with incident angle θ ∈ [0, 2π], find u = u(x) such

that

u = uinc + uscat with incident field uinc(x) = eikθ̂·x,

and uscat ∈ C2(R2 \ Ω) satisfies the Helmholtz equation

Δuscat + k2uscat = 0 in R2 \ Ω,

Sommerfield radiation condition

∂uscat

∂r
− ikuscat = o

�
r(1−d)/2

�
uniformly for r := |x| → ∞,

uniformly with respect to x∗ := x
|x| , and the boundary condition

uscat + uinc = 0 on ∂Ω,

or

∂uscat

∂n
+

∂uinc

∂n
= 0 on ∂Ω.
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2.4.1 Approximate/Absorbing Boundary Conditions (ABCs)

Again, consider the direct scattering exterior Helmholtz problem to a d-dimensional

body:

Δu+ k2u = 0 in Rd \ Ω,

u = uscat + eik·x·θ̂ = 0 on ∂Ω (soft body)

or
∂u

∂n
=

∂

∂n

�
uscat + eik·x·θ̂

�
= 0 on ∂Ω (hard body)

lim
r→∞

r
n−1
2

�∂uscat(x)

∂r
− ikuscat(x)

�
= 0 (Sommerfield radiation condition)

Note that uinc = eikθ̂·x and r = |x|. The Helmholtz equation exterior to a body is

well-posed only when one adds a Sommerfield radiation condition which models the

behavior of the solution as the domain tends to infinity (Medvinsky et al., 2008). For

a numerical solution, one needs to truncate the unbounded domain and introduce

an artificial surface with a boundary condition (Medvinsky et al., 2008). That is,

to solve the Helmholtz equation numerically, we replace the Sommerfield radiation

condition with a boundary condition on a surface at a finite distance. We can derive

approximations of the Sommerfield radiation condition called the absorbing boundary

conditions (ABCs), which are typically derived from asymptotic expansions of the

solution at large distances from the origin and become more accurate the larger the

radius r of the boundary ∂Ω is. Higher accuracy of such approximations can be

achieved by increasing the size of the computational domain.

• First Order ABC:

∂u

∂n
− iωu = 0 on Γ,
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where Γ is an artificial boundary. Absorbing boundary conditions (ABCs) are used

when the computational domain of the exterior problem is infinite or too large to

discretize numerically. We cut down the domain to a smaller size and introduce an

artificial boundary. We then apply the ABCs at this boundary (Runberg, 2012-04).
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2.5 Finding the Scattered Wave via Boundary Integral Equations

In the exterior problem, approximating the problem numerically due to the infinite

size of the solution domain Ω is an especially difficult task (Runberg, 2012-04). It

is not possible to discretize an unbounded domain. One approach we discussed and

will prove important soon was truncating the infinite domain and implementing an

absorbing boundary condition (ABC) at the new boundary Γ. In this section, we

discuss another approach to solving an exterior problem.

In exterior problems, the Helmholtz equation is set in an unbounded domain.

Assuming a constant index of refraction, it is possible to rewrite the Helmholtz

equation,

Δu(x) + ω2u(x) = 0, x �= Ω̄,

where Ω̄ denotes the closure of the domain, as an integral equation set on the

boundary of Ω. Namely, we find the scattered solution outside Ω as an integral

equation. Starting with the Dirichlet case, i.e., g(x) = −uinc(x), let Φ(x) denote the

fundamental solution for the Helmholtz equation in d dimensions. That is,

Φ(x) :=





i
4
H0(ω|x|), d = 2,

exp(iω|x|)
4π|x| , d = 3.

(2.17)

Remember that H0 denotes the Hankel function of the first kind of order zero. Then,

the scattered solution is subsequently given by evaluating the single layer potential
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integral equation

uscat(x) =

�

∂Ω

Φ(x− y)ψ(y) ds(y) = −uinc(x), x ∈ Rd \ Ω̄, (2.18)

where ψ is a continuous function on ∂Ω.

Alternatively, we can solve the double layer potential integral equation

1

2
ψ(x)−

�

∂Ω

∂Φ

∂n
(x− y)ψ(y) ds(y) = −uinc(x), x ∈ ∂Ω. (2.19)

In this case, the scattered solution outside Ω then is given by

uscat(x) = −
�

∂Ω

∂Φ

∂n
(x− y)ψ(y) ds(y), x ∈ Rd \ Ω̄ (2.20)

(Runberg, 2012-04). We can denote the single layer operator, with ψ ∈ L2(∂Ω), by

S:

(Sψ)(x) :=

�

∂Ω

Φ(x− y)ψ(y) ds(y), x ∈ ∂Ω. (2.21)

We can think of ψ as the density of acoustic sources generating the field Sψ (Moiola,

n.d.). The single-layer operator S is a type of boundary integral operator. The other

type of boundary integral operator discussed is the double layer potential D:

(Dψ)(x) :=

�

∂Ω

∂Φ

∂n(y)
ψ(y) ds(y), x ∈ ∂Ω. (2.22)
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2.6 The Water-Sediment Model

Figure 2.4 The domain for the water-sediment model. Similar to the domain for the
point source Helmholtz problem but with new boundaries created by splitting the left
and right sides of the boundary. The boundary conditions include periodic boundary
conditions for the top and bottom subdomains.
.

Consider the damped Helmholtz equation Δu + ω2u + iωαu = 0 with the following

boundary conditions:

Bottom Γ5 : u = 0 (Dirichlet)

Top Γ2 :
∂u

∂n
− iωu = 0 (ABC)

Left and Right : u
��
Γ1

= u
��
Γ3

u
��
Γ6

= u
��
Γ4
.

Consider the ABC boundary condition, which is an impedance condition for the

subdomain Γ2:
∂u
∂n

− iωu = 0. We separate the incoming and scattered waves so we
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can solve for uscat. The solution u = uinc + uscat and we substitute u into the ABC,

obtaining

∂uinc

∂n
+

∂uscat

∂n
− iωuinc − iωuscat = 0

=⇒ ∂uscat

∂n
− iωuscat = −∂uinc

∂n
+ iωuinc.

Note that uinc = exp
�
iωθ̂ · x

�
= exp

�
iω(cos θx1 + sin θx2)

�
, where θ̂ = (cos θ, sin θ)

and x = (x1, x2). Note also that

∇uinc · n = uinc ·
�
iω cos θ, iω sin θ

�
· (0, 1) = iω sin θ · exp

�
iω(cos θx1 + sin θx2)

�
.

Hence

−∂uinc

∂n
+ iωuinc = −iω sin θ · exp

�
iω(cos θx1 + sin θx2)

�
+ iω exp

�
iω(cos θx1 + sin θx2)

�

= exp
�
iω(cos θx1 + sin θx2)

�
· (iω(1− sin θ)).

Variational Form Derivation

Figure 3.1 refers to the water-sediment domain Ω. The incident plane wave

uinc = exp
�
iωθ̂ · x

�
; therefore, u = uscat + uinc = uscat + exp

�
iωθ̂ · x

�
=

uscat + exp
�
iω(cos θx1 + sin θx2)

�
. We again split the solution u into real and

imaginary parts, i.e., u = ur + iui, where Re(u) = ur and Im(u) = ui. Consider

the Helmholtz equation with a damping term with n ≡ 1, the index of refraction.
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Substituting ur + iui for u, we obtain

Δ(ur + iui) + ω2(ur + iui) + iαω(ur + iui) = 0

Again, we can separate the terms further into real and imaginary parts

Δur + ω2ur − αωui + i(Δui + ω2ui + αωur) = 0

We obtain the coupled system





Δur + ω2ur − αωui = 0,

Δui + ω2ui + αωur = 0.

However, for a domain Ω ⊂ R2 with boundary Γ2 as seen in Figure 3.1, the Helmholtz

equation with attenuation and absorbing boundary condition reads:

Δu+ ω2u+ iωαu = f in Ω,

iω(1− sin θ) exp
�
iω(cos θx1 + sin θx2)

�
= ∇u · n− iωu on Γ2.

We additionally split the boundary condition to real and imaginary parts. Letting ψ =

cos θx1 + sin θx2, we split the absorbing boundary condition into real and imaginary
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parts:

∇u · n− iωu = iω(1− sin θ) exp
�
iωψ)

= iω(1− sin θ)
�
cosωψ + i sinωψ

�

= ω(1− sin θ)
�
− sinωψ

�
+ iω(1− sin θ) cosωψ

= ∇ur · n+∇ui · n− iωur + iωui.

So we have

∇ur · n+ ωui = ω(1− sin θ)(− sinωψ)

=⇒ ∇ur · n = −ωui + ω(1− sin θ)(− sinωψ).

Similarly,

∇ui · n− ωur = ω(1− sin θ) cos(ωψ)

=⇒ ∇ui · n = ωur + ω(1− sin θ) cos(ωψ).

Thus, after splitting the ABC to real and imaginary parts, we obtain Neumann

boundary conditions





∇ur · n = −ωui + ω(1− sin θ)(− sinωψ) = g1,

∇ui · n = ωur + ω(1− sin θ) cos(ωψ) = g2.

(2.23)
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We obtain the weak form by multiplying each equation by a test function vr ∈ H1(Ω)

and vi ∈ H1(Ω) for each respective equation, integrate by parts, and apply Green’s

first identity. We then obtain the following variational form: i.e., we found a u =

ur + iur ∈ H1(Ω)×H1(Ω) such that





ar(u, v) =

�

Ω

(∇ur ·∇vr − αωuivr + ω2urvr) dx

=

�

Ω

fvr dx+

�

Γ2

g1vr ds = Lr(v)

ai(u, v) =

�

Ω

(∇ui ·∇vi + αωurvi + ω2uivi) dx =

�

Γ2

g2vi ds = Li(v),

where f is the source term and g1 and g2 are given by (3.9).

Alternatively, one can derive the weak form without splitting u into real and

imaginary parts. That is, we focus on the Helmholtz equation with attenuation and

impedance boundary condition on Γ2:





Δu+ ω2u+ iωαu = f in Ω

∂u
∂n

− iωu = h on Γ2,

(2.24)

where h = ∇uinc · n. Since the boundary condition involves the imaginary unit,

the variational formulation of this BVP involves complex-valued Sobolev spaces, a

sesquilinear form a(·, ·) : V × V → C, and an antilinear function L(·) : V → C.

Multiplying (3.9) by v, where v is the complex conjugate of v, and integrating over Ω

while using Green’s first identity and the impedance boundary condition yields the
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following variational form without the split:





a(u, v) :=

�

Ω

(−∇u ·∇v + ω2uv + iωαu) dx,

L(u, v) :=

�

Ω

fv dx+

�

Γ2

hv ds.

(2.25)

2.6.1 Solution to Water-Sediment Model Problem

In summary, the water-sediment model refers to wave propagation in an underwater

acoustic environment consisting of a water-sediment layer. Scattering effects close

to the seafloor require simulations of the solution to the Helmholtz equation. Now

again for the Helmholtz equation (which has attenuation term iωαu for the bottom

sediment layer but no attenuation for the top water layer), we have the following

boundary conditions:

u = 0 on Γ5 (Dirichlet)

∂u

∂n
− iωu = iω(1− sin θ)uinc on Γ2 (ABC)

u
��
Γ1

= u
��
Γ3
, u

��
Γ6

= u
��
Γ4

(We assume that the attenuation of sound in the water is negligible, so we set α = 0 in

the water domain). Then we separated the incident and scattered waves uinc and uscat

respectively, deriving the following variational form of the BVP for the water-sediment

model:





a(u, v) :=

�

Ω

(−∇u ·∇v + ω2uv + iωαu) dx,

L(u, v) :=

�

Γ2

hv ds,

V := H1(Ω),
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where h = ∇uinc ·n. The equations above refer to the wave propagation in the bottom

sediment layer. The variational form for the topwater layer part does not contain the

attenuation term and so would not include the term iωαu.

Figure 2.5 Plot of the incident plane wave uinc = exp
�
iω(cos θx + sin θy)

�
. The

incident angle is θ = 7π/12 and frequency ω = 2π. The computational domain is
denoted by a parametric curve x = s, y = 0.1 sin(2πs) + 5.
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Figure 2.6 Plot of the Helmholtz solution u to the water-sediment problem with
frequency ω = 2π. The attenuation α = 5 and we can see damping occurs at
the bottom sedimentary layer part. The computational domain is denoted by a
parametric curve x = s, y = 0.1 sin(2πs) + 5.

Figure 2.7 Plot of the absolute value solution |u|. The implementation of the
scattering field u and |u| was done on COMSOL Multiphysics Software.
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CHAPTER 3

DOMAIN DECOMPOSITION METHODS FOR FORWARD
MODELING OF UNDERWATER ACOUSTIC ENVIRONMENTS

3.1 Introduction to the Domain Decomposition Method

One of the main difficulties with the finite element method is that when especially

considering large wavenumbers (in other words solving high-frequency scattering

problems), FEM often leads to a large, complex-valued, and highly indefinite sparse

matrix for larger-sized problems. Furthermore, the exterior Helmholtz problem

renders the use of finite elements alone often inefficient on account of the size of the

unknown vector. In particular, the use of finite elements proves especially inefficient

in dealing with the Sommerfield radiation condition on the boundary of the truncated

domain of interest (Pedneault, 2018). Hence we have to approximate the Sommerfield

radiation condition with absorbing boundary conditions to mimic the phenomenon

that only holds at infinity, yielding approximation errors in addition to the issue of

the inefficacy of FEM for too large-sized domains.

In this chapter, we introduce another approach to direct scattering problems

for especially large-sized domains, namely domain decomposition methods. Domain

decomposition methods (DDMs) can sometimes reduce the computational complexity

of the underlying solution method. Additionally, DDMs help enhance the localized

treatment of complex and irregular geometries (Chan, Mathew, et al., 1994). DDMs

are iterative methods for solving PDEs based on the decomposition of the spatial

domain of the BVP into several subdomains (in our case, we will first split one

large rectangular domain into two smaller rectangular subdomains). The large-sized

problem is then broken down into subproblems that can be solved more efficiently

with existing methods (in our case we will use FEM) (Discacciati, 2004).

54



3.1.1 How Domains Are Decomposed: Overlapping vs. Non-overlapping

Regions

Figure 3.1 Example domain with two overlapping regions: Ω = Ω1 ∪ Ω2.

The main geometric issue arising in domain decomposition concerns how the

domains are to be decomposed into subregions as well as how the region is to

be discretized using some form of mesh. Domain decomposition methods divide

broadly into either being overlapping or nonoverlapping methods. When there is

overlap, the methods are sometimes referred to as Schwarz methods; when there is

no overlap, the methods are sometimes known as substructuring (Edelman, 2005).

We will especially focus on non-overlapping domain decomposition methods for the

Helmholtz equation, and specifically apply the Lions-Després DDM, a method that

combines the continuity conditions on the artificial interfaces between subdomains to

obtain absorbing boundary conditions and solve the overall problem by iterating over

subdomains (Boubendir et al., 2012).
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Figure 3.2 Example of a two-dimensional non-overlapping partition of the
computation domain Ω.

3.2 Lions-Després DDM

Consider the two-dimensional sound-soft Helmholtz scattering problem of an incident

acoustic wave by an obstacle Ω:





Δu+ ω2u = 0 in R2 \ Ω,

u = −uinc on Γ = ∂Ω,

lim
r→∞

r
�
∂ru− iku

�
= 0.

(3.1)

Here uinc = exp
�
ikθ̂ · x

�
is a plane wave with x = (x1, x2) ∈ R2 and r = |x|. θ̂ is the

incident angle normalized on the unit circle. The Sommerfield radiation condition in

(4.1) imposes that the scattered wave is outgoing.

In this section, we combine absorbing boundary conditions with Lions-Després’

non-overlapping domain decomposition method to solve (4.1). As discussed last
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chapter, implementing ABCs involves truncating the infinite domain by introducing

an artificial boundary Γ
�
to get a bounded computational region. Thus, we can

approximate (4.1) by





Δu+ ω2u = 0 in Ω,

u = −uinc on Γ,

∂nu+ Bu = 0 on Γ
�
,

(3.2)

where Ω is the bounded domain enclosed by the artificial boundary Γ
�
and Γ and the

operator B represents an approximation of the Dirichlet to Neumann (DtN) operator

(here B = ik on Γ
�
) (Boubendir et al., 2012). Note that the DtN operator and the

ABCs are related and the DtN operator maps the Dirichlet data u to the Neumann

data ∂u/∂n with n pointing outward, i.e., it is the operator D satisfying

∂u

∂n
= Du, x ∈ ∂Ω. (3.3)

Next we discuss the iterative Lions-Després’ non-overlapping DDM:
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Algorithm 1 Lions-Després DDM

1: Split Ω into Ndom subdomains Ωi, i = 1, 2, . . . , Ndom, such that

• Ω =
�Ndom

i=1 Ωi.

• Ωi ∩ Ωj = ∅, if i �= j (i, j = 1, . . . , Ndom).

• ∂Ωi∩∂Ωj = Σij = Σji (i, j = 1, . . . , Ndom) is the artificial interface separating
Ωi and Ωj as long as its interior Σij �= ∅.

• Γi = Γ ∩ ∂Ωi and Γ
�
i = Γ

� ∩ ∂Ωi for i = 1, . . . , Ndom.

2: Reduce the solution of (4.2) by solving the local transmission problems for i =
1, . . . , Ndom





Δu
(n+1)
i + ω2u

(n+1)
i = 0 in Ωi,

u
(n+1)
i = −uinc on Γi,

∂ni
u
(n+1)
i + Su(n+1)

i = g
(n)
ij on Σij .

Forming the quantities to be transmitted through the interfaces yields

g
(n+1)
ji = −∂ni

u
(n+1)
i + Su(n+1)

i = −g
(n)
ij + 2Su(n+1)

i on Σij.

Here ui = u|Ωi
. S is the transmission operator (Boubendir et al., 2012).

3.3 Application of Lions-Després DDM to the Direct Scattering Model

Problem

We divide the water-sediment model from the last chapter into two domains yielding

the following local transmission problems:

Water Domain

Δu1 + ω2u1 = 0 on Ω1

(∂n1u1 − iωu1)
(n+1) = g

(n)
21 (3.4)

∂u1

∂n
− iωu1 = iω exp

�
iω(cos θx+ sin θy)

�
(ABC)

u1

��
Γ1

= u1

��
Γ3

(periodic boundary conditions)
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Figure 3.3 The rectangular two-dimensional non-overlapping partition of the
computation domain Ω = Ω1 ∪ Ω2 for the water-sediment model. Ω1 refers to the
water domain and Ω2 refers to the sediment domain.

Sediment Domain

Δu2 + (ω2 + iaω)u2 = 0 on Ω2

u2

��
Γ5

= 0 (Dirichlet BC) (3.5)

u2

��
Γ6

= u2

��
Γ4

(periodic boundary conditions)

(∂n2u2 − iωu2)
(n+1) = g

(n)
12
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3.3.1 Weak Form of the Split Domains

Here we derive the weak forms of the local transmission problems for the water domain

and the sediment domain. First, we recall the integration by parts formula

�

Ω

Δuv =

�

Ω

∇ · (∇u)v =

�

∂Ω

(∇u · n)v −
�

Ω

∇u ·∇v. (3.6)

Domain 1 : Water Domain Weak Form

Observing that

�

∂Ω1

(∇u1 · n)v =

�

Γ2

(iωu)v +

�

Σ

(g21 + iωu1v,

we obtain the weak form for the water domain:

set V =
�
v ∈ H1(Ω) : v

��
Γ1

= v
��
Γ3

�
. We multiplied by a test function v ∈ V and

found u1 ∈ V such that





V =
�
v ∈ H1(Ω) : v

��
Γ1

= v
��
Γ3

�
,

a(u1, v) =

�

Ω1

∇u1 ·∇v − ω2u1v dx− iω

�

Σ

u1v dS,

L(v) =

�

Γ2

hv dS +

�

Σ

g21v dS,
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where h = ∇uinc · n = iω exp
�
iω(cos θx+ sin θy)

�
.

Domain 2 : Sediment Domain Weak Form

We note that

�

∂Ω2

(∇u2 · n)v =

�

Σ

(g12 + iωu2v).

Hence, we obtain the weak form for the sediment domain:

Set W =
�
v ∈ H1(Ω) : v

��
Γ6

= v
��
Γ4

and v
��
Γ5

= 0
�
. We multiplied by a test function

v ∈ W and found u2 ∈ W such that





W =
�
v ∈ H1(Ω) : v

��
Γ6

= v
��
Γ4

and v
��
Γ5

= 0
�
,

a(u2, v) =

�

Ω2

∇u2 ·∇v − (ω2 + iωα)u2v dx− iω

�

Σ

u2v dS

L(v) =

�

Σ

g12v dS.

Hence the large-sized problem is broken down into two subproblems that can be solved

more efficiently and ideally reduce the computational complexity of the numerical

solution.
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CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS FOR THIS WORK

Forward modeling of underwater acoustic environments via finite element modeling

remains an important challenge in computational ocean acoustics. This thesis

addressed how the properties of finite element solutions of the Helmholtz equation

can lead to forward simulations of the underwater seafloor environment.

Thus, a finite element approach has been presented for forward modeling of the

underwater seafloor. Firstly, a rigorous treatment of both the Helmholtz equation

and finite element method was developed. Then we applied finite element modeling

to solving the boundary value problem consisting of the Helmholtz equation with

and without a point source in the domain and zero boundary conditions in the

square to showcase both the plane and circular solutions in 2D. We observed that

a wave generated by a localized source function, or from inhomogeneous boundary

conditions on a bounded scatterer, will propagate outwards from the source, and as

distance increases will assume the form of a circular wave (Runberg, 2012-04). This

forward model incorporates simulations of circular waves seen in sonar imaging and

is valuable for analyzing the seafloor. This also motivates forward modeling resulting

in simulations of spatial scales in the seafloor geometry.

We then motivated the necessary background on time-harmonic acoustic

scattering problems defined on exterior domains. In the exterior problem, the infinite

size of the solution domain provides difficulties with numerical approximation of the

solution. We thus couple absorbing boundary conditions, where we truncate the

domain to a manageable size and introduce an artificial boundary. In doing this,

we simulated a two-layer seafloor with wave scattering eventually damping past the

computational domain, thus incorporating a model-based approach to underwater

acoustic wave scattering simulation. Finally, we concluded with an introduction
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to a non-overlapping domain decomposition method for our forward model. The

method consists of combining continuity conditions on the artificial interfaces between

subdomains to obtain absorbing boundary conditions and iterate over the subdomains

(Boubendir et al., 2012).

We can extend this work by investigating the impact of the domain decomposition

method on computational efficiency results, such as accounting for the number of

iterations necessary to improve the detailed simulation of underwater acoustic wave

scattering in the seafloor. We successfully derived the weak formulation of both the

water subdomain and sediment subdomain. However, there is still a need to perform

numerical tests. In particular, we can incorporate more complex seafloor features into

the water-sediment model, including modeling within the water column, absorption,

and 3D simulations.
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